Rev.0TF3.30 20230831

10G SFP+ ZR Transceiver Hot Pluggable, Duplex LC, 1550nm EML, SMF 80KM, DDM, CDR

Part Number: FSPP-H7-S15-80DQ

Overview

FSPP-H7-S15-80DQ Small Form Factor Pluggable SFP+ transceivers are compliant with the current SFP+ Multi-Source Agreement (MSA) Specification. The high performance cooled 1550nm EML transmitter and high sensitivity APD receiver provide superior performance for 10GBASE-ZR/ZW applications up to SMF 80km optical links. And it is equipped with internal TX and RX retime units (Clock and Data Recover, CDR) to comply SONET/SDH jitter requirements and to enhance host card's high-speed data signal integrity.

Applications

- 10GBASE-LR/LW Ethernet @10.3125G
- Fiber Channel 1200-SM-LL-L 10GFC @10.51875G
- SONET OC-192 & SDH STM-64 @9.953G
- CPRI Option #8 @10.1376G OTN OTU2 @10.7G, OTU2e @11.09G

Features

- Compliant with 10GBASE-ZR/ZW
- Compliant with CPRI Option 8
- Compliant with SFF-8431, SFF-8432 SFP+ MSA
- Support 9.953Gb/s to 11.1Gb/s Multi-Rate
- Built-in TX CDR and RX CDR
- Hot Pluggable
- 1550nm EML laser transmitter
- APD receiver
- Duplex LC connector
- 2-wire interface for management and diagnostic monitor compliant with SFF-8472
- Single +3.3V power supply
- Link distance 80km over SM fiber
- **RoHS Compliant**

Sales@Ficer.com

Laser Safety

TEL+886-2-2898-3830

- This is a Class 1 Laser Product complies with 21 CFR 1040.10 and 1040.11 except for conformance with IEC 60825-1 Ed. 3., as described in Laser Notice No. 56, dated May 8, 2019.
- Caution: Use of control or adjustments or performance of procedure other than those specified herein may result in hazardous radiation exposure.

Rev.0TF3.30_20230831

Absolute Maximum Ratings

Parameters	Symbol	Min.	Max.	Unit
Storage Temperature	T _{ST}	-40	+85	°C
Storage Relative Humidity	RH	5	95	%
Supply Voltage	Vcc	-0.5	+4.0	V

Recommended Operating Conditions

Parameters	Symbol	Min.	Тур.	Max.	Unit
Case Operating Temp. (FSPP-H7-S15-80DQ)	TOP	0	-	+70	°C
Case Operating Temp. (FSPP-H7-S15-80DQi)	Top	-40	-	+85	°C
Supply Voltage	Vcc	+3.13	+3.3	+3.47	V
Supply Current (FSPP-H7-S15-80DQ)	Icc			520	mA
Supply Current (FSPP-H7-S15-80DQi)	Icc			650	mA

Transmitter Electro-optical Characteristics

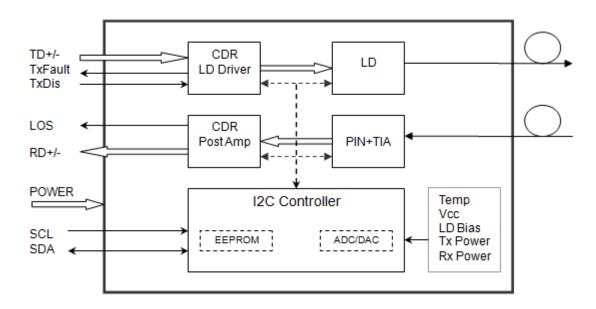
 $V_{CC} = 3.13V$ to 3.47V, $T_{OP} = 0$ °C to 70 °C(FSPP-H7-S15-80DQ); $T_{OP} = -40$ °C to 85 °C(FSPP-H7-S15-80DQi)

Parameters	Symbol	Min.	Тур.	Max.	Unit	Note
Operating Data Rate	DR	9.953	10.3125	11.1	Gb/s	
Optical Launch Power	Po	0		+4	dBm	1
Optical Center Wavelength	λc	1530	1550	1565	nm	
Spectral Width (-20dB)	Δλ			1	nm	
Side Mode Suppression Ratio	SMSR	30			dB	
Optical Extinction Ratio	ER	8.2			dB	
Dispersion Penalty	DP			3	dB	
Optical Eye Mask		IEEE802.3ae				
Relative Intensity Noise	RIN			-128	dB/Hz	
Differential Data Input Swing	VIN	180		850	mV	
Tx Disable Input Voltage-Low (Tx ON)	TDISVL	GND		0.8	V	
Tx Disable Input Voltage-High (Tx OFF)	TDISVH	2.0		Vcc	V	
Tx Fault Output Voltage-Low (Tx Normal)	TFLTV∟	GND		0.8	V	
Tx Fault Output Voltage-High (Tx Fault)	TFLTVH	2.0		Vcc	V	

Note1: The optical power is launched into a 9/125µm single mode fiber.

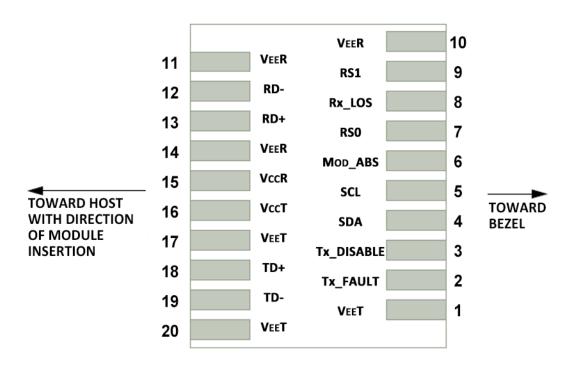
Rev.0TF3.30_20230831

Receiver Electro-optical Characteristics


 $V_{CC} = 3.13V$ to 3.47V, $T_{OP} = 0$ °C to 70 °C(FSPP-H7-S15-80DQ); $T_{OP} = -40$ °C to 85 °C(FSPP-H7-S15-80DQi)

Parameters	Symbol	Min.	Тур.	Max.	Unit	Note
Operating Data Rate	DR	9.953	10.3125	11.1	Gb/s	
Receiver Sensitivity	SEN			-23	dBm	1
Maximum Receive Power	PRX_MAX	-7			dBm	1
Optical Center Wavelength	λc	1260		1620	nm	
LOS De-Assert	LOSD			-24	dBm	
LOS Assert	LOSA	-35			dBm	
LOS Hysteresis	LOSHY	0.5			dB	
Differential Data Output Swing	Vоит	300		900	mV	
Receiver LOS Signal Output Voltage-Low	LOSVL	GND		0.8	V	
Receiver LOS Signal Output Voltage-High	LOSVH	2.0		Vcc	V	

Note1: Measured with a PRBS 231-1 test pattern @10.3125Gbps BER<10-12.


Transceiver Block Diagram

TEL+886-2-2898-3830

Rev.0TF3.30_20230831

Pin Assignment

Host PCB SFP+ Pad Assignment Top View

Pin Description

Pin	Name	Function / Description				
1	VEET	Transmitter Ground				
2	Tx_FAULT	Transmitter Fault Indication (1)				
3	Tx_DISABLE	Transmitter Disable – Turns off transmitter laser output (2)				
4	SDA	2-wire Serial Interface Data Line (SDA: Serial Data Signal) (3)				
5	SCL	2-wire Serial Interface Clock (SCL: Serial Clock Signal) (3)				
6	Mod_ABS	Module Absent, connected to VEET or VEER in the module (3)				
7	RS0	Rate Select 0, optional (5)				
8	Rx_LOS	Receiver Loss of Signal Indication (4)				
9	RS1	Rate Select 1, optional (5)				
10	VEER	Receiver Ground				
11	VEER	Receiver Ground				
12	RD-	Receiver Inverted Data output, AC coupled				

Rev.0TF3.30_20230831

13	RD+	Receiver Non-Inverted Data output, AC coupled			
14	VEER	Receiver Ground			
15	VccR	Receiver 3.3V Power Supply			
16	VccT	Transmitter 3.3V Power Supply			
17	VEET	Transmitter Ground			
18	TD+	Transmitter Non-Inverted Data Input, AC coupled			
19	TD-	Transmitter Inverted Data Input, AC coupled			
20	VEET	Transmitter Ground			

Note1: Tx Fault is open collector/drain output which should be pulled up externally with a 4.7K~10KΩ resistor on the host board to supply <VccT+0.3V or VccR+0.3V. When high, this output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to <0.8V.

Note2: Tx Disable input is used to shut down the laser output per the state table below. It is pulled up within the module with a $4.7K\sim10K\Omega$ resistor. 1) Low(0 $\sim0.8V$): Transmitter on; 2) Between(0.8V and 2V): Undefined; 3) High (2.0 \sim VccT): Transmitter Disabled; 4) Open: Transmitter Disabled

Note3: These are the module definition pins. They should be pulled up with a $4.7K\sim10K\Omega$ resistor on the host board to supply less than VccT+0.3V or VccR+0.3V. Mod_ABS is grounded by the module to indicate that the module is present.

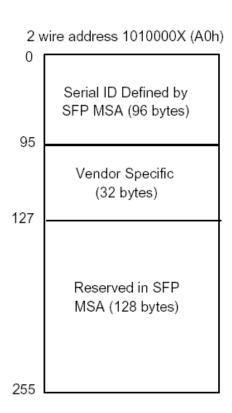
Note4: Rx_LOS (Loss of signal) is an open collector/drain output which should be pulled up externally with a 4.7K~10KΩ resistor on the host board to supply <VccT+0.3V or VccR+0.3V. When high, this output indicates the received optical power is below the worst case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to <0.8V.

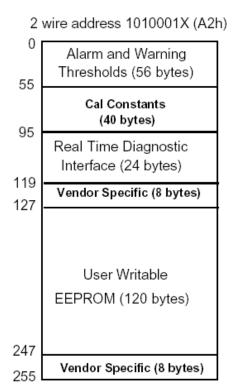
Note5: Tied to ground through a 30K ohm resistor.

Digital Diagnostic Functions

As defined by the SFP MSA (SFF-8472) Ficer's SFP+ transceivers provide digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters:

- Transceiver temperature
- Laser bias current
- Transmitted optical power
- Received optical power
- Transceiver supply voltage

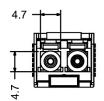

It also provides a sophisticated system of alarm and warning flags, which may be used to alert end-users when particular operating parameters are outside of a factory-set normal range.

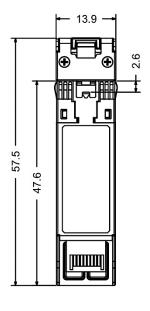

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Controller (DDC) inside the transceiver, which is accessed through the 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL pin) is generated by the host. The positive edge clocks data into the SFP+ transceiver into those segments of its memory map that are not write-protected. The negative edge clocks data

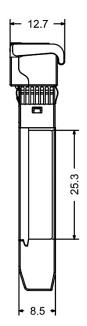
Rev.0TF3.30_20230831

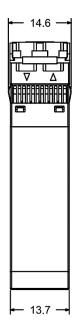
from the SFP+ transceiver. The serial data signal (SDA pin) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. For more detailed information including memory map definitions, please see the SFP MSA (SFF-8472) Specification.

Digital Diagnostic Memory Map




Digital Diagnostic Monitoring Characteristics


Parameter	Accuracy	Unit	Note
Temperature	±3	°C	Internal Calibration
Supply Voltage	±0.1	V	Internal Calibration
Tx Bias Current	±5	mA	Internal Calibration
Tx Output Power	±3	dB	Internal Calibration
Rx Received Optical Power	±3	dB	Internal Calibration


Rev.0TF3.30_20230831


Mechanical Dimensions

(All Dimensions are ±0.20mm Unless Otherwise Specified, Unit: mm)

Ordering Information

Part No.	Tx	Rx	Link	DDM	Temp.
FSPP-H7-S15-80DQ		1260nm			0~70°C
FSPP-H7-S15-80DQi	1550nm	~ 1620nm	80km	Yes	-40~85°C

Note1: Distances are indicative only. To calculate a more precise link budget based on specific conditions in your application, please refer to the optical characteristics.